KOMBINIERTE THERMISCHE ANALYSE AN DREISCHICHTTON-MINERALEN*

J. SCHOMBURG UND M. STÖRR

Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Strasse 17a, Griefswald (D.D.R.-22) (Eingegangen am 10 Juni 1977)

ABSTRACT

Three-layer silicates were studied by thermal investigations with the derivatograph (DTA/TG and DTA/dilatometry). Differential dilatometry is a sensitive method for studying the dehydratation properties of a montmorillonite with Li saturation. This method is also useful for the determination of the natural cation saturation of montmorillonites. The range of dehydroxylation of a montmorillonite with various cation saturation is studied by DTG and differential dilatometric methods. The investigation shows that the dehydroxylation range is influenced by the type and the valency of the cations. The differential dilatometry is a valuable method for the distinction of various Smectite-types, nontronite, illite and muscovite in the temperature range above 700°C. The amount of octahedral iron can be calculated from the dilatometric curves. Finally, some problems of the thermal investigation of illitemontmorillonite mixed-layer minerals are discussed.

ZUSAMMENFASSUNG

Mit Derivatographen werden thermische Untersuchungen an Dreischichtsilikaten in den Kombinationen DTA/TG und DTA/Dilatometrie durchgeführt. Bei der Verfolgung des Dehydratationsverhaltens eines Li-belegten Montmorillonites erwies sich die Differentialdilatometrie als aussagekräftigste Methode. Die Eignung dieser Methode zur Bestimmung der dominierenden Kationenbelegungsart natürlicher Montmorillonite wird gezeigt. Der Dehydroxylationsverlauf eines verschieden monoionisch belegten Montmorillonites wird differentialthermogravimetrisch und differentialdilatometrisch verfolgt.

Die Untersuchungen ergaben, dass die Dehydroxylation von der Art und Wertigkeit des Kations beeinflusst wird. Die Differentialdilatometrie ermöglicht im Temperaturbereich oberhalb 700°C die Unterscheidung von verschiedenen Montmorillonit-Typen, Nontronit, Illit und Muskovit.

^{*} Vortrag gehalten auf der Jahrestagung der AG "Thermoanalyse" der DDR, Jena, 1977.

Aus den Dilatometerkurven kann auf den Gehalt an oktaedrisch fixiertem Eisen geschlassen werden. Abschliessend werden Probleme der thermischen mixed-layer-Mineraluntersuchung diskutiert.

I. EINLEITUNG

Thermische Analysenmethoden haben in der Vergangenheit ein breites Anwendungsfeld in der Tonmineralogie gefunden und einen wesentlichen Beitrag zum Studium der Tone geleistet. Von der grossen Zahl der vorliegenden Publikationen seien für die DTA die Arbeiten von Mackenzie¹⁸ und Smykatz-Kloss²⁶, für die Dilatometrie die Arbeiten von Steger²⁷, Kiefer¹⁴ und Lehnhäuser¹⁷ und für die Thermogravimetrie die Publikationen von Keattch¹³ und Duval⁵ genannt, in denen der gegenwärtige Kenntnisstand zusammengefasst ist.

Eine generelle Problematik ist es, mit Hilfe der thermischen Analysemethoden

TABELLE I

CHEMISMUS UND VERUNREINIGUNGEN DER UNTERSUCHTEN PROBEN

Probe	Lir.	Chemismus		-		Verunreinigungen	 Kurz-
		Aloze.	Feats.3-	Mgozz.	Alter.		bezeichnung
Montm. Bayard New Mexiko, U.S.A.	25	1.46	0.07	0.48	0.00	Spur Feldspat	BY Cheto-Typ
Montm. Belle Fourche South Dakota, U.S.A. API-Proj Nr. 27	25	1.56	0.19	0.29	0.10	5% Quarz	BF Wyoming-Typ
Montm. Polkville (Lorena), Miss., U S.A.	25	1.54	0.23	0.24	0.18	Spur Quarz	PO Übergangstyp
API-Proj. Nr. 20 Nentronit Garfield Washington, U.S.A. API-Proj. Nr. 33 a	30	0.05	1.93	0.12	0.50	—	GF
Fe-reicher Beidellit Mittelherwigsdorf Bez Dresden D.D.R.	15	1.16	0.71	0.26	0.47	Spuren Quarz, Kalzit, Kaolinit	м
Muskovit-Montm. mixed-layer Seilitz	28	1.66	0.12	0.30	0.32	·	SE
Muskovit-Montm. mixed-layer Dolgen Ber Rostock D.D.P.	12	1.27	0.41	0.53	0.42	Spur Illit	DO
Illit, Morris Ill., U.S.A.		1.16	0.24	0.47	0.31	4% Quarz, Spur Pvrit	MS
Muskovit Dolni Bory C.S.S.R.			nicht u	ntersuchi	[DB
Hydromuskovit Lukavice, C.S.S.R.			nicht u	ntersucht			LU

die strukturellen Differenzierungen innerhalb der einzelnen Tonmineralgruppen zu erfassen. Hierzu wurde bisher insbesondere die DTA herangezogen^{9, 26}. In vorliegender Arbeit soll am Beispiel der Dreischichtsilikate gezeigt werden, dass durch kombinierte thermische Analysen (DTA-TG; DTA-Dilatometrie) präzisierte qualitative Aussagen gemacht werden können.

2. PROBEMATERIAL UND UNTERSUCHUNGSMETHODIK

Die kombinierten thermischen Untersuchungen erfolgten an möglichst reinen Smektiten, mixed-layer-Mineralen und Illiten, deren Chemismus zum überwiegenden Teil bekannt ist (Tabelle 1).

Die Proben wurden durch Mörsern auf Korngrössen von $< 63 \mu m$ gebracht und im allgemeinen mit ihrer natürlichen Kationenbelegung untersucht. Für die Untersuchung des Dehydratationsverhaltens wurde der Montmorillonit von Belle Fourche mit 1 N-Lösungen verschiedener Kationen monoionisch belegt.

Die Untersuchungen wurden mit Derivatographen, Typ 0D 102, in den Kombinationen DTA-Thermogravimetrie und DTA-Dilatometrie vorgenommen. Für die dilatometrischen Messungen wurden zylindrische Probekörper durch Trockenpressen (ca. 240 kp/cm²) mit der zum Derivatographen gelieferten Vorrichtung hergestellt. Diese Probekörperherstellungsart gewährleistet den von Lehnhäuser¹⁷ geforderten Unordnungsgrad der Probekörperpackung für Substanzen mit Anisotropieeffekten in ihrem Dilatationsverhalten, wie Zwetsch³¹ bei dilatometrischen Untersuchungen an Serizit zeigen konnte. Folgende apparative Bedingungen wurden gewählt.

Kombination DTA-TG
Probemenge: 800–1000 mg
Inertmaterial: 800 mg Al ₂ O ₃ bei 1200°C geglüht
Ofenatmosphäre: Luft, statisch
Probetiegel: Pt, ϕ 12,5 mm; für indirekte Temperaturmessung Wanddicke: 0,5
mm; Länge: Durchmesser < 2
Thermoelemente: Pt-Pt/Rh, ϕ 0,35 mm
Aufheizgeschwindigkeit: 10°C/min; unterhalb 200°C und oberhalb 900°C
geringfügige, apparativbedingte Abweichungen
Endtemperatur: 1000°C
Probepackung: lose, nicht gepresst
Empfindlichkeit der TG: 200 mg
Empfindlichkeit der DTG: 1/5
Empfindlichkeit der DTA: 1/10
Kombination DTA-Dilatometrie

Probemenge: 3,6 g Inertmaterial: Kaolinitprobekörper; 1100°C geglüht. Abmessungen für Probe und Inertkörper: h = 17 mm; innerer Durchmesser: h = 8 mm; äusserer Durchmesser: h = 16 mm.

Probehalter: Pt-Teller; 0,5 mm Wanddicke

Thermoelemente: Pt-Pt/Rh, ϕ 0,35 mm

Aufheizgeschwindigkeit: 10°C/min; unterhalb 200°C und oberhalb 900°C geringfügige, apparativbedingte Abweichungen

Endtemperatur: 1000°C Empfindlichkeit der TD: 200 mg Empfindlichkeit der DTD: 1/5 Empfindlichkeit der DTA: 1/10 Andruck: 1000 mg pro 1,5 cm²; Übertragung über Quarzkeil und Quarzstab Ofenatmosphäre: Luft, statisch

3. UNTERSUCHUNGSERGEBNISSE

Dehydratation

Wie bekannt, wird das Dehydratationsverhalten der Dreischichtsilikate vor

Abb. 1. Ermittlung des Dehydratationsverlaufes des Li-belegten Montmorillonites von Belle Fourche mit unterschiedlichen thermischen Methoden (DTG, DTA, DTD).

TABELLE 2

Montmorillonit von Belle Fourche K ⁺	Charakteristische Del			
	Differential- thermoana Aisch	Differential- dilatometrisch	Differential- thermogravimetrisch	
	160	110	160	
Nat	170	105 140	170	
Li÷	115 220 325	175 190 240 340**	205 240 320	
Mg ²⁺	240 280	155 270	170 280	

170

200

TEMPERATUREN CHARAKTERISTISCHER DEHYDRATATIONSSTUFEN MONOKONISCH BELEGTER PROBEN DES MONTMORILLONITES VON BELLE FOURCHE, ERMITTELT AUS DEN DTA-, DTG- UND DIFFERENTIALDILATO-METER(DTD)-KURVEN

Unterstrichene Temperatur entspricht der stärksten Dehydratationsstufe.

210

Dehnung.

Ca2+

allem von der Art der austauschbaren Kationen bestimmt. Die Kenntnis der Ionenbelegung ist z.B. für die Beurteilung von technologischen Eigenschaften oder das Verhalten der Phasen im Hochtemperaturbereich (Phasenneubildung) von Bedeutung. Deshalb fanden auch thermische Methoden (DTA, TG) vielfache Anwendung zur Charakteristik des Dehydratationsverhaltens und der Ermittlung der dominierenden Kationenbelegung^{3, 11, 16, 21}.

Bei diesen Untersuchungen wurde festgestellt, dass die Dehydratation des an die austauschbaren Kationen gebundenen Wassers im allgemeinen bei 1-wertigen Kationen 1-stufig und bei 2-wertigen Kationen 2-stufig erfolgt. Dieser Verlauf der Entwässerung konnte auch durch unsere dilatometrischen Studien an verschiedenen monoionisch belegten Montmorilloniten bestätigt werden, wie aus Abb. 1 und Tabelle 2 am Beispiel des Montmorillonites von Belle Fourche hervorgeht. Abweichend verhalten sich Li⁺-belegte Proben, die mehrere Dehydratationsstufen zeigen, deren Ursachen bisher nicht geklärt sind¹⁹.

Möglicherweise ist die bei ca. 320°C festgestellte relative Dehnung der Li⁺belegten Proben auf den von Gauglitz und Schwiete⁷ und Heller und Kalman¹⁰ angenommenen Einbau des Li⁺ in die Oktaederschicht zurückzuführen.

Die mit der Differentialdilatometrie festgestellten Dehydratationstemperaturen (Tabelle 1) liegen generell niedriger als jene, die mit der DTA bzw. Differentialthermogravimetrie (DTG) ermittelt wurden. Die Ursache hierfür sind die kürzeren Diffusionswege (Probe-Ofenatmosphäre) des ausgetriebenen Wassers der dilatometrisch untersuchten Probekörper. Beim Vergleich der unterschiedlichen thermischen Methoden, die zur Verfolgung des Dehydratationsverlaufes angewandt wurden, zeigt es sich, dass die Differentialdilatometrie die grösste Unabhängigkeit von dea apparativen Einflüssen besitzt und die grösste Empfindlichkeit aufweist. Diese Vorteile ermöglichen eine erfolgreiche Anwendung der Differentialdilatometrie für die Bestimmung der dominierenden Kationenbelegung natürlicher Proben (Abb. 2).

210

180

Abb. 2. Bestimmung des natürlichen Kationbelags eines Montmorillonites durch Vergleich mit monoionisch belegten Eichproben (am Beispiel des Montmorillonites von Belle Fourche) anhand von Differentialdilatometerkurven.

Dehydroxylation

Bei zunehmender Temperaturerhöhung (> 450 °C) schliesst sich an die Dehydratation der Bereich der Dehydroxylation an, der durch den Austritt von ca. 4–6% Kristallwasser gekennzeichnet ist. Die Temperaturen der Dehydroxylationsmaxima hängen von der Korngrösse, vom Ordnungsgrad des Kristallgitters, der Kationenbelegung und dem Chemismus ab. Die differentialthermoanalytisch gemessenen Dehydroxylationspeaks werden meist herangezogen für qualitative und quantitative Bestimmungen und zur Unterscheidung verschiedener Typen innerhalb der Smektitgruppe (Montmorillonit i.e.S., Beidellit, Nontronit, trioktaedrische Smektite).

Hierbei soll nach Mackenzie und Bishiu²⁰ die Art der Kationenbelegung keinen wesentlichen Einfluss auf die Dehydroxylationspeaktemperaturen der DTA-Kurven haben.

Bei der kombinierten Anwendung der Differentialthermogravimetrie und der Differentialdilatometrie zeigte es sich, dass eine unterschiedliche Kationenbelegung den Vorgang des Kristallwasseraustrittes und die damit verbundenen Dilatationseigenschaften wesentlich beeinflussen kann. Eine Belegung mit 1-wertigen Kationen

Abb. 3. Verlauf der differentialthermogravimetrischen Kurven und der differentialdilatometrischen Kurven zwischen 300 und 800°C für den natürlich und monoionisch (Na⁻, K^{*}, Mg²⁺) belegten Montmorillonit von Belle Fourche.

des Montmorillonites von Belle Fourche führt zu einem Dehnungsbereich oberhalb 650°C, den die mit Mg-Ionen belegte Probe nicht aufweist (Abb. 3). Die differentialthermogravimetrischen Aufnahmen dieser Proben (Abb. 4) zeigen eine relative plötzliche Dehydroxylation der mit einwertigen Kationen belegten Proben in einem schmalen Temperaturintervall (650-770°C) und ein relativ breites Dehydroxylationsintervall von 500-750°C für die mit Mg-Ionen belegte Probe (Abb. 4). Die Ursachen für diese Erscheinungen liegen wahrscheinlich darin begründet, dass durch einwertige Kationen eine stärkere Schichtkontraktion bedingt wird, wodurch der Austritt des Kristallwassers erschwert wird und schliesslich mehr oder weniger abrupt unter Begleitung einer Dehnung erfolgt.

Gitterzerfall und Sinterung

Oberhalb 750°C setzt der Zerfall der Dreischichtsilikatgitter ein und es beginnt die Bildung von Hochtemperaturphasen. Gleichlaufend tritt eine mehr oder weniger starke Schwindung der Probekörper auf. Diese Prozesse werden im starken Masse

Abb. 4. Differential dilatometrische Kurven von Smektittypen und Illit/Muskovit mit natürlicher Kationenbelegung. DB = Muskovit von Dolni Bory; LU = Hydromuskovit von Lukavice; MS = Illit von Morris; GF = Nontronit von Garfield; M = Montmorillonit von Mittelherwigsdorf; BF = Montmorillonit von Belle Fourche; PO = Montmorillonit von Polkville; BY = Montmorillonit von Bayard.

beeinflusst vom Chemismus, der Korngrösse, der ehemaligen Kationenbelegung, dem Ordnungsgrad der Minerale, den Beimengungen und dem Porenraum einschliesslich der Orientierung der Teilchen der Probekörper.

Von Grim und Kulbicki⁹ wurde der Verlauf der DTA-Kurve oberhalb 800°C zur Unterscheidung der Wyoming- und Cheto-Typen verwendet. Für die Unterscheidung aller übrigen Dreischichttonminerale bietet die DTA keine ausreichende Möglichkeit ruchr.

Die bisherigen dilatometrischen Untersuchungen einer grösseren Anzahl verschiedener Dreischichttonminerale erlauben die berechtigte Vermutung, dass die Dilatometrie, insbesondere die Differentialdilatometrie, eine Möglichkeit zur weiteren thermoanalytischen Abgrenzung bietet. Als Merkmale können herangezogen werden:

Dehnungeffekte von der gitterzerfallsbedingten Schwindung im Temperaturbereich von 500-800°C;

die Grösse des Abknickwinkels der Dilatometerkurve als Ausdruck für die Schwindungsgeschwindigkeit zu Beginn des Gitterzerfallsprozesses²³;

die Peaktemperaturen der Differentialdilatometerkurve, die die Änderungen der Schwindungsrate zwischen 800 und 1000°C anzeigen;

die den Scheitelpunkten der Peaks der Differentialdilatometerkurven zugehörigen Amplituden, die ein Mass für die Schwindungsbeträge bei den jeweiligen Temperaturen sind.

Danach lassen sich für die in Abb. 4 angeführten Vertreter einzelner Dreischichtsilikattypen folgende Feststellungen treffen:

Der Wyoming-Typ (Belle Fourche), der Übergangs-Typ (Polkville) und der Cheto-Typ (Bayard) lassen sich von den Fe-reichen Smektiten und den Iliiten abgrenzen durch eine bei ca. 750°C einsetzende intensive Schwindung, die zu einer grossen Amplitude des bei ca. 850°C liegenden Peaks der Differentialdilatometerkurve führt. Der Cheto-Typ zeigt einen deutlichen 2-stufigen Gitterzerfall unterhalb 1000°C durch entsprechende Peaks auf der Differentialdilatometerkurve (ca. 850°C und 900-930°C) an. Beim Wyoming- und Übergangs-Typen tritt die zweite Stufe zwischen 1020 und 1050°C auf.

Die Vertreter des Wyoming-Types bringen im Unterschied zu den anderen Montmorillonit-Typen eine Dehnung zwischen ca. 650 und 700°C auf den Differentialdilatometerkurven hervor. Die Temperaturen, bei denen diese Dehnung auftritt, unterscheiden sich deutlich von denen, die entsprechenden Dehnungen in den Differentialdilatometerkurven der Illite (500-600°C) und des Muskovites von Dolni Bory (500-800°C) zugehörig sind.

Der Fe-reiche Montmorillonit von Mittelherwigsdorf unterscheidet sich von. den Montmorilloniten i.e.S. durch seinen geringeren Schwindungsbetrag bis cz. 850°C und durch seinen Wert des Abknickwinkels der Dilatometerkurve (ca. 110°; die Winkelwerte für die Wyoming-, Übergangs- und Cheto-Typen liegen zwischen 93 und 102°).

Die Nontronite weisen mit 114° die grössten Winkelwerte auf. Wie aus Abb. 4 ersichtlich ist, erfahren sie ihre stärkste Schwindung erst oberhalb 900°C (Peakmaxima der Differentialdilatometerkurven bei ca. 980°C). Der Illit von Morris zeichnet sich gegenüber den quellfähigen Dreischichtsilikaten durch eine Verschiebung ues ersten Peaks zu höheren Temperaturen (ca. 900°C) aus, was gleichzeitig anzeigt, dass der bei ca. 850° erreichte Schwindungsbetrag geringer ist als bei den Montmorilloniten i.e.S.

Der Muskovit von Dolni Bory und der Hydromuskovit von Lukavice zeichnen sich bis 1000°C gegenüber allen anderen Proben durch eine geringe Gesamtschwindung aus, was u.a. darin zum Ausdruck kommt, dass > 800°C keine an deutliche Schwindungsstufen gebundene Peaks auf den Differentialdilatometerkurven beobachtet werden können.

Beide Minerale lassen sich in erster Linie durch den unterschiedlichen Dehnungsverlauf bis 800°C unterscheiden.

Für die kristallchemische Charakteristik der quellfähigen Dreischichtsilikate sind unter der Voraussetzung monoionischer Kationenbelegung und vergleichbarer Korngrössen folgende Kriterien der DTA-Kurven verwendbar:

mit steigender oktaedrischer Mg-Substitution geht eine Vergrösserung des 3 endothermen Peaks^{9, 22} einher, der durch den Strukturverlust und untergeordnet durch die Abgabe von Hydroxylwasserresten⁶ verursacht wird;

das Temperaturintervall zwischen 3 endothermen Peak und dem sich gewöhn-

Abb. 5. Abhängigkeit des Abknickwinkels der Dilatometerkurve vom oktaedrischen Fe-Gehalt (nach Schomburg und Landgraf²⁴).

lich anschliessenden exothermen Peak nimmt mit steigendem Fe-Gehalt der Struktur zu²⁶.

Auch die Dilatometrie beinhaltet eine Möglichkeit zur kristallchemischen Charakteristik der Dreischichtsilikate. Die Abknickwinkel der Dilatometerkurven im Gitterabbaubereich sind nicht nur ein Mass für die Schwindungsgeschwindigkeit, sondern ermöglichen auch Aussagen über die oktaedrisch fixierten Fe-Gehalte. Unsere Untersuchungen zeigten, dass unabhängig vom Kationenbelag der Winkelwert mit dem oktaedrisch fixierten Eisen korreliert, d.h. bei steigenden Fe-Gehalten der Oktaederschicht nimmt der Winkelwert zu²⁴. Aus Abb. 5 ist ersichtlich, dass bei hohen Fe-Gehalten (Nontronit) diese Beziehung nicht mehr linear ist.

In der Vergangenheit wurde die thermische Analyse auch für die Abschätzung der Schichtanteile von mixed-layer-Mineralen verwendet^{2, 4}. Dabei bediente man sich des Peakflächenvergleiches der für Illit (500-600°C) und Montmorillonit (ca. 700°C) charakteristischen Dehydroxylationspeaks der DTA-Kurven. Ein Beispiel für die erfolgreiche Anwendung dieser Methode geben Al-Rawi et al¹., die Dreischichtsilikate aus sedimentären Bildungen unterschiedlicher genetischer Position aus dem Norden der DDR untersuchten.

Man muss sich jedoch darüber im klaren sein, dass diese Methode nur erfolgreich angewandt werden kann, wenn der Doppeldehydroxylationspeak zwischen 500 und 700°C nicht durch folgende Umstände verursacht wird:

Mg-Kationenbelag eines Smektites²⁹;

Mischung von Montmorillonit i.e.S. und Beidellit²⁵;

niederen Ordnungsgrad, wie er von Grim und Kulbicki⁹ für Wyoming-Typen angenommen wird;

Mischung von Al- und Fe-reichen Schichten bei Smektiten⁸;

Rehydroxylation nach geothermischer Temperung, die nur einen teilweisen Einbau der OH-Gruppen an den Originalstellen bewirkt und dadurch zu einer 2-stufigen Dehydroxylation führt.

Unsere begonnenen dilatometrischen Untersuchungen an Muskovit-Montmorillonit-Wechsellagerungsmineralen lassen vermuten, dass die Dilatometrie auch Möglichkeiten zur Schichtanteilabschätzung unter der Voraussetzung vergleichbaren Kationenbelags bietet. Als Kriterium scheint sich die Temperatur des ersten im Gitterzerfallsbereich liegenden Peaks der Differentialdilatometerkurven, die das Ende der maximalen Schwindungsgeschwindigkeit angibt, verwenden zu lassen.

Dieser Peak tritt auf bei:

den Montmorilloniten und Nontroniten zwischen 820 und 870°C;

den Illiten um bzw. oberhalb 900°C.

Die Anzahl der bisher untersuchten reinen mixed-layer-Minerale ist aber noch zu gering, um allgemeingültige Aussagen zu treffen.

4. SCHLUSSFOLGERUNGEN

Die durchgeführten Arbeiten zeigen, dass neben der geläufigen Kombination

von DTA und Thermogravimetrie die Einbeziehung der Dilatometrie zur Erhöhung der Genauigkeit der qualitativen Mineraldiagnose beitragen kann, wobei gleichzeitig technologisch interessierende Parameter (linearer Ausdehnungskoeffizient, Sinterpunkt) gewonnen werden können.

Die Aufgaben zukünftiger dilatometrischer Untersuchungen sollten darin bestehen, neben der — auch in unserer Arbeit dominierenden — phänomenologischen Beschreibung der Resultate die Beziehungen zur Struktur und deren Chemismus sowie allgemeingültigen Gesetzmässigkeiten des Sinterprozesses stärker in den Mittelpunkt zu rücken.

LITERATUR

- 1 D. Al Rawi, K.-H. Henning, K.-F. Landgraf und M. Störr, Acta Univ. Geol. Carolin., 1 (1975) 25.
- 2 D. F. Bail, Clay Miner., 7 (1968) 363.
- 3 I. Barshad, Am. Mineral., 35 (1950) 225.
- 4 W. F. Cole, Nature (London), 175 (1955) 384.
- 5 C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, 2nd edn., 1963.
- 6 F. Freund, Keram. Z., 19 (1967) 433.
- 7 R. Gauglitz und H. E. Schwiete, Ber. Dtsch. Keram. Ges., 38 (1961) 43.
- 8 R. E. Grim, Clay Mineralogy, McGraw-Hill New York, Toronto, London 1953.
- 9 R. E. Grim und G. Kulbicki, Am. Mineral., 46 (1961) 1329.
- 10 L. Heller und Z. H. Kalman, Clay Miner. Bull., 4 (1961) 213.
- 11 S. B. Hendricks, R. A. Nelson und L. T. Alexander, J. Am. Chem. Soc., 62 (1940) 1457.
- 12 K.-H. Henning, Ber. Disch. Ges. Geol. Wiss. Reihe B, 16 (1972) 5.
- 13 C. Keattch, An Introduction to Thermogravimetry, Heyden, London, 1969.
- 14 C. Kiefer, Keram. Z., 9 (1957) 382, 432.
- 15 G. Kranz, Rundtischgespräch des Arbeitskreises "Tonminerale und Phasenanalyse" der Gesellschaft für Geologische Wissenschaften der DDR, Dresden, 1974.
- 16 H. Lehmann, S. S. Das und H. H. Paetsch, Tonind. Ztg., (1955) 1Bh.
- 17 W. Lehnhäuser, Sprechsaal, 99 (1966) 108.
- 18 R. C. MacKenzie (Ed.), Differential Thermal Analysis, Vol. 1 und Vol. 2, Academic Press, London, 1970 und 1972.
- 19 R. C. MacKenzie, Ber. Disch. Keram. Ges., 41 (1964) 696.
- 20 R. C. MacKenzie und B. M. Bishui, Clay Miner. Bull., 3 (1958) 276.
- 21 E. Nemecz, Acta Geol. Acad. Sci. Hung., 6 (1962) 365.
- 22 J. B. Page, Soil Sci., 56 (1943) 273.
- 23 J. Schomburg, Chem. Erde, 35 (1976) 192.
- 24 J. Schomburg und K.-F. Landgraf, Proc. 7th Conf. Clay Miner. Petrol., Praha, 1977, pp. 139-150.
- 25 L. G. Schultz, Clays Clay Miner., 17 (1969) 115.
- 26 W. Smykatz-Kloss, Differential Thermal Analyses. Application and Results in Mineralogy, Springer-Verlag, Berlin/Heidelberg/New York, 1974.
- 27 W. Steger, Ber. Disch. Keram. Ges., 23 (1942) 46.
- 28 M. Störr, Unveröff. Forschungsbericht. Sektion Geologische Wissenschaften der Ernst-Moritz-Arndt-Universität, Greifswald, 1971.
- 29 K. P. Tomar und I. Th. Rosenqvist, Lithos, 8 (1975) 269.
- 30 C. E. Weaver und L. D. Pollard, The Chemistry of Clay Minerals, Elsevier, Amsterdam, 1973.
- 31 A. Zwetsch, Ber. Dtsch. Keram. Ges., 32 (1955) 236.